
EECS 470 Computer Architecture
Final Project Presentation

Group 12: Shixin Song, Zesheng Yu, Yuqing Qiu, Chenyan Zhang, Zimeng Zhang

University of Michigan

2022/04/19

Implemented Features

Features:

▶ MIPS R10K Architecture

▶ 3-way superscalar

▶ Blocking 4-way set associative DCache

▶ GShare Branch Predictor

▶ Branch Target Buffer

▶ Instruction Prefetcher

▶ Instruction buffer

Figure: R10K Architecture

Fetch Stage

▶ Determine fetch instruction PC
according to Target PC Logic.

▶ Fetch one cache line each time (1-2
instruction).

▶ Stall on Icache miss or instruction
buffer (32 entry) is full.

Figure: Target PC Logic Design

Fetch Stage

Advantage:

▶ Instruction Buffer allows fetch even
when dispatch stage stalls.

▶ Target PC Logic with a predecoder,
GShare branch predictor and BTB
allows a more precise instruction fetch.

Figure: Target PC Logic Design

Branch MPKI

B
ra

nc
h

M
P

K
I

0

100

200

300

400

500

ale
xn

et.
c

ba
ck

tra
ck

.c

ba
sic

_m
all

oc
.

bfs
.c

dft
.c

fc_
for

ward
.c

gra
ph

.c

ins
ert

ion
so

rt.

matr
ix_

mult
_r

merg
es

ort
.c

om
eg

alu
l.c

ou
ter

_p
rod

uc

pri
ori

ty_
qu

eu

qu
ick

so
rt.c

so
rt_

se
arc

h.c

Basic Branch MPKI Adv Branch MPKI

Figure: Branch MPKI: adv v.s. basic

Inst Buffer Empty Cycle
To take full use of the instruction buffer, we then implement a next-line prefetcher.

In

st
 B

uf
fe

r E
m

pt
y

C
yc

le
 /

C

yc
le

0

25

50

75

100

ale
xn

et.
c

ba
ck

tra
ck

.c

ba
sic

_m
all

oc
.

bfs
.c

dft
.c

fc_
for

ward
.c

gra
ph

.c

ins
ert

ion
so

rt.

matr
ix_

mult
_r

merg
es

ort
.c

om
eg

alu
l.c

ou
ter

_p
rod

uc

pri
ori

ty_
qu

eu

qu
ick

so
rt.c

so
rt_

se
arc

h.c

Basic Fetch Buffer Enpty Cycle Adv Fetch Buffer Enpty Cycle

Figure: Inst Buffer empty cycle / total cycle: adv v.s. basic

Dispatch Stage and Issue Stage

Dispatch Stage:

▶ Decode raw instructions into unified packets

▶ Dispatch instructions in FIFO order based on
the free count of ROB and FUs

▶ Ensure freelist never meets structural hazards

Issue Stage:

▶ Number of RS entry same as Number of FUs

▶ Once ready, RS issue instructions to the
corresponding FU

▶ Physical register file supports at most 6 read
requests Figure: Dispatch and Issue Stage

Execute Stage and Complete Stage

Execute Stage:

▶ Instruction from RS, value for Preg file

▶ 3 ALUs, 3 MULTs, 3 LDs, 3 STs, 1 Branch

▶ MULT take 2 cycles, others 1

▶ More than 3 inst completed per cycle

Complete Stage:

▶ Complete buffer with max size same as ROB
size

▶ Broadcast at most 3 inst results per cycle

Figure: Execute and Complete Stage

Retire Stage

Retire Stage

▶ 3 completed instructions at the head of ROB
can be retired.

▶ On branch misprediction, start squashing ROB
and RS, copy map table and calculate freelist

▶ When stores retire, LSQ will send storing
requests to DCache.

Figure: Retire Stage

Final performance we have achieved

▶ Reduce the clock period from one memory access latency to 17.5ns

▶ Performance evaluated by Time/Instruction is largely improved

Performance Analysis

▶ Basic design vs. in-order
pipeline

▶ Time/Instruction reduced
significantly

Figure: Time/Inst of Basic design vs P3

Performance Analysis

▶ Advanced design vs.
basic design

▶ Time/Instruction reduced
significantly

▶ especially on the cases
with less load and store
instructions

Figure: Time/Inst of Advanced design vs Basic design

Challenges we have overcome

▶ Redesign ROB, RS and LSQ to decrease the synthesis clock period from 20ns+ to
8ns

▶ Revise the given C program to make smaller program to debug

Future improvements

▶ Non-Blocking Data Cache to support multiple load and store requests

▶ Separated LSQ to support multiple load in execute stages and multiple store
retirement

▶ Early branch resolution to squash incorrect branches in advance

Q & A

Thanks for listening!

