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Implemented Features

Features:
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MIPS R10K Architecture

3-way superscalar

Blocking 4-way set associative DCache
GShare Branch Predictor
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Fetch Stage
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Figure: Target PC Logic Design



Fetch Stage

Advantage:

» |nstruction Buffer allows fetch even
when dispatch stage stalls.

» Target PC Logic with a predecoder,
GShare branch predictor and BTB

allows a more precise instruction fetch.
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Branch MPKI
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To take full use of the instruction buffer, we then implement a next-line prefetcher.

Inst Buffer Empty Cycle
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Dispatch Stage and Issue Stage

Dispatch Stage:
» Decode raw instructions into unified packets

» Dispatch instructions in FIFO order based on
the free count of ROB and FUs

» Ensure freelist never meets structural hazards
Issue Stage:
» Number of RS entry same as Number of FUs

» Once ready, RS issue instructions to the
corresponding FU

> Physical register file supports at most 6 read
requests
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Figure: Dispatch and Issue Stage



Execute Stage and Complete Stage

Execute Stage:

» Instruction from RS, value for Preg file

» 3 ALUs, 3 MULTSs, 3 LDs, 3 STs, 1 Branch

» MULT take 2 cycles, others 1

» More than 3 inst completed per cycle
Complete Stage:

» Complete buffer with max size same as ROB

size
» Broadcast at most 3 inst results per cycle
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Retire Stage

Retire Stage

» 3 completed instructions at the head of ROB
can be retired.

» On branch misprediction, start squashing ROB
and RS, copy map table and calculate freelist

» When stores retire, LSQ will send storing
requests to DCache.
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Figure: Retire Stage



Final performance we have achieved

» Reduce the clock period from one memory access latency to 17.5ns

» Performance evaluated by Time/Instruction is largely improved



Performance Analysis

Comparison of Time/Inst between basic design and P3
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Performance Analysis

» Advanced design vs.
basic design

» Time/Instruction reduced
significantly
» especially on the cases

with less load and store
instructions

Time/Inst of Advanced design vs Basic design
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Figure: Time/Inst of Advanced design vs Basic design



Challenges we have overcome

» Redesign ROB, RS and LSQ to decrease the synthesis clock period from 20ns+ to
8ns

» Revise the given C program to make smaller program to debug



Future improvements

» Non-Blocking Data Cache to support multiple load and store requests

» Separated LSQ to support multiple load in execute stages and multiple store
retirement

» Early branch resolution to squash incorrect branches in advance



Q&A

Thanks for listening!



