EECS 470 Computer Architecture
Final Project Presentation

Group 12: Shixin Song, Zesheng Yu, Yuqing Qiu, Chenyan Zhang, Zimeng Zhang
University of Michigan

2022/04/19



Implemented Features

Features:

| 2

vVvyVvYyVvyYyvyy

MIPS R10K Architecture

3-way superscalar

Blocking 4-way set associative DCache
GShare Branch Predictor

Branch Target Buffer

Instruction Prefetcher

Instruction buffer

Target_PC_logic

Instruction
Cache

m Arch. Table
Reg T+

Freelist Decoder

ROB
Map Table T Told
Reg T+ RS_Assembler

_l?rancth Branch
ar9et Ylprecdictor | <]
Instruction Buffer

Buffer

e
YT T g

Complete

Buffer
LTI e |

Load Store
Queue



Fetch Stage

Target_PC_logic

Instruction
eer [|Precdictor
l Instruction | L Buffer
Prefetcher putler
h [ Arch. Table|

)

Reg T+
. . . Freelist Decoder ‘_,
» Determine fetch instruction PC 1j P it
. . lap Table T Told
according to Target PC Logic. Reg T ] s pssemtier

» Fetch one cache line each time (1-2
instruction).

R s
» Stall on lcache miss or instruction

buffer (32 entry) is full.

Complete
Buffer

Load Store
Queue

Figure: Target PC Logic Design



Fetch Stage

Advantage:

» |nstruction Buffer allows fetch even
when dispatch stage stalls.

» Target PC Logic with a predecoder,
GShare branch predictor and BTB

allows a more precise instruction fetch.

is_branch
branch_type

Inst
Branch

Precdictor

B

Predicted
Target

taken
BE Branch
Target
Bliften BTB Target
|+_4| PC+4
L1

Figure: Target PC Logic Design



Branch MPKI

500

400

o
o
[3p)

o o
o o
N -~

IMdIN ydueig

@ Adv Branch MPKI

B Basic Branch MPKI




To take full use of the instruction buffer, we then implement a next-line prefetcher.

Inst Buffer Empty Cycle

100

w0 o
~ Yo}

re}
N P2

9[0AD # / 919AD Aidwig Jayng Jsu| #

B Adv Fetch Buffer Enpty Cycle

B Basic Fetch Buffer Enpty Cycle

P



Dispatch Stage and Issue Stage

Dispatch Stage:
» Decode raw instructions into unified packets

» Dispatch instructions in FIFO order based on
the free count of ROB and FUs

» Ensure freelist never meets structural hazards
Issue Stage:
» Number of RS entry same as Number of FUs

» Once ready, RS issue instructions to the
corresponding FU

> Physical register file supports at most 6 read
requests

S | gy
a’;e Precdictor | [
Instruction Buffer
Buffer

[oener ] [
Arch. Table
Freelist Decoder
=T
ROB
Map Table I A T E—
Reg T+ RS_Assembler
RS
(R T B
[BRancH] Ny N,/ \io/ \s1/
[
Complete
Buffer 1
e

Load Store
Queue

Figure: Dispatch and Issue Stage



Execute Stage and Complete Stage

Execute Stage:

» Instruction from RS, value for Preg file

» 3 ALUs, 3 MULTSs, 3 LDs, 3 STs, 1 Branch

» MULT take 2 cycles, others 1

» More than 3 inst completed per cycle
Complete Stage:

» Complete buffer with max size same as ROB

size
» Broadcast at most 3 inst results per cycle

Target_PC_logic
Branch | prancn

Target
s [precdictor

[ W N7\

Complete
Buffer

Figure: Execute and Complete Stage



Retire Stage

Retire Stage

» 3 completed instructions at the head of ROB
can be retired.

» On branch misprediction, start squashing ROB
and RS, copy map table and calculate freelist

» When stores retire, LSQ will send storing
requests to DCache.

[Feten |

I Instruction

Target_PC_logic

B | granch
orget lerecdictor |1

F

meﬁ

Freelist Decoder

[Arch. Table]
Reg T+

Map Table
Reg T+ RS_Assembler

Complete
Buffer

RS
Bl 9 N7 7
QAT A7A .74

Figure: Retire Stage



Final performance we have achieved

» Reduce the clock period from one memory access latency to 17.5ns

» Performance evaluated by Time/Instruction is largely improved



Performance Analysis

Comparison of Time/Inst between basic design and P3
250

200

o
S

1

Time/Inst (ns)
>
3

» Basic design vs. in-order

73
S

pipeline
» Time/Instruction reduced S N N N R
o ,(@ & & F N GE oS @\\ N &
significantly 2 g N T ST S F TS
¢ & SR & & e
B é’b N

Testcases

M Basic_simv Time / inst (ns) 8 P3 Time / inst (ns)

Figure: Time/Inst of Basic design vs P3



Performance Analysis

» Advanced design vs.
basic design

» Time/Instruction reduced
significantly
» especially on the cases

with less load and store
instructions

Time/Inst of Advanced design vs Basic design

9 < < < <
< S &8 S S

120

100

0 |‘
<
xS

®
o

@
o

N
o

~N
=)

¢

9 ¢ o o [
NS & o S < o Al < o*
& F T & S SN TS
Q}Q’. & & \°¢‘\ ) < M & é\e,% Q'\O & &6“ &
R ©’ A R S S o
3 © & &
& q.,é\ & &0
& N

M Basic_simv Time / inst (ns) M Advance_simv Time / inst (ns)

Figure: Time/Inst of Advanced design vs Basic design



Challenges we have overcome

» Redesign ROB, RS and LSQ to decrease the synthesis clock period from 20ns+ to
8ns

» Revise the given C program to make smaller program to debug



Future improvements

» Non-Blocking Data Cache to support multiple load and store requests

» Separated LSQ to support multiple load in execute stages and multiple store
retirement

» Early branch resolution to squash incorrect branches in advance



Q&A

Thanks for listening!



